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ABSTRACT: HS2 is a vital investment in Britain’s future, aiming to develop a modern railway
for fast, frequent, and reliable travel. It supports the government’s goal of upgrading UK railways
and enhancing journeys across the country. Phase 1 connects London and Birmingham, serving
about 30 million people. The Skanska Costain STRABAG Joint Venture (SCS JV) is responsible
for building the London Tunnels segment of HS2 and is unique among sections for exclusively
using Earth Pressure Balance (EPB) TBMs. The complexity of this work requires the JV to
develop new methods and technologies that transform the construction industry for future
generations. This paper discusses the EPB operation of the eastern section of the Northolt Tunnel
(NTE), which comprises two parallel 9.11-meter-diameter tunnels spanning 11 km. Tunnelling
started in February 2024 and finished in June 2025.

1 PROJECT DESCRIPTION
1.1 HS2 project and SCS JV project

CELX7 N High Speed 2 (HS2) will be Britain's
] second purpose-built high-speed railway
project after High Speed 1, which
connects London to the Channel Tunnel.
HS2 has been under construction since
2019.
The planned route runs from Handsacre
in southern Staffordshire down to
London, with a branch to Birmingham
(see Figure 1).
The new high-speed track will directly
serve London and Birmingham, while
services to Glasgow, Liverpool, and
Manchester will use a combination of
the new high-speed track and the

S S existing West Coast Main Line.
s Q\ S The SCS JV project comprises the 20.8
el P 2 km southern end of HS2, connecting it
i to Euston Station in the heart of London.

Figure 1. HS2 complete project overview
Source: Wikipedia



1.2 SCS JV stretch and details Northolt Tunnels East

The SCS JV tunnels are divided into the Northolt Tunnels, which include Tunnels East (NTE)
and West (NTW), and the Euston Tunnels. Details are shown in Figure 2. The 8.4-mile (13.5 km)
Northolt Tunnel is being
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Figure 2. SCS section of HS2; Source: SCS JV via an extraction process

shaft. High groundwater
pressures and permeable ground conditions at the Green Park Way site required completing the
TBM drives within a purpose-built pressurised steel reception chamber. The following sections
of this paper detail the design, EPB construction methodology, and performance of the Northolt
Tunnels East (NTE) section. The TBMs have been designed to handle the soft London Clay, the
predominant geological layer in that section. Both TBMs have excavated an impressive 1,550,000
tonnes of London Clay and installed 5,840 concrete tunnel rings along the way. At peak
performance, the TBMs advanced approximately 38 metres per day.

1.3 Overview

As shown in the geological long sections in Figure 3, the first 4.5 km of tunnel drive lies within
the London Clay Formation (C, B, A3). The tunnel then enters the Harwich Formation,
comprising the Upper Mottled Clay, Lower Mottled Clay, and Sand Units, with the invert marking
the transition as the tunnel extends west of the London Basin and the London Clay thins.

Borehole Geology Colour Legend
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Figure 3. Geological overview of NTE tunnels; Source SCS JV



1.4 London Clay Formations

London Clay, a stiff, over-consolidated marine clay from the Eocene epoch, is a key geological
formation in southeast England, characterised by high plasticity and low permeability. For tunnel
boring machines, London Clay is challenging to work with because of its strong tendency to clog.
Therefore, the clay must be converted into a plastic, flowable and compressible muck using foams
and polymers, which also helps ensure the necessary face stability and reduces volume-loss
settlements (Jancsecz, Langmaack, 1999).

2 TBM DESIGN

The TBM was designed and delivered by Herrenknecht based on the detailed specifications
provided by SCS. During the design phase, lessons learned from completed bored tunnel
operations in London Clay, as well as from other bored tunnels in comparable geologies, were
incorporated.

2.1 Cutterhead

The cutterhead opening ratio was increased to approximately 58%, allowing an easier muck
flow through the cutterhead into the excavation chamber. The cutterhead could switch between
rippers and double-disk cutters. The detailed cutterhead configuration is shown in Figure 4.
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Figure 4. NTE cutterhead design, including foam conditioning nozzles (blue); Source: SCS JV

Apart from the opening ratio, the number and distribution of the foam nozzles are of utmost
importance.



2.2 Soil conditioning system

In principle, the soil conditioning system follows industry-standard technology (see Figure 5).
Nevertheless, a couple of new design features were implemented. The TBM was fitted with a
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Figure 5. Foam Injection System; Source: Herrenknecht

3 LABORATORY SOIL TESTING

rather important rotary coupling, providing
sufficient independent feed lines to each
injection nozzle at the cutterhead. These
injection nozzles could be used for foam or
water injection. The location and quantity
of the foam nozzles (see Figure 4: Foam
nozzles highlighted in blue) were
specifically designed to deliver sufficient
volumes of foam and water and distribute
them most effectively. There is a total of 9
soil conditioning nozzles at the cutterhead
and 2 additional nozzles in the centre of the
excavation chamber.

The London Clay, analysed at the MC laboratories as part of the soil conditioning research, was

found to have the following characteristic values:

e Moisture content of received sample [%]

Natural moisture content [%] as per GBR
Atterberg plastic limit wp [%]

Atterberg liquid limit wy, [%]

Atterberg plasticity index Ip
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Figure 6. Clogging risk diagram (Hollmann Thewes 2013) with London Clay parameters (blue dot)

Inputting the determined London Clay plasticity and consistency values into the clogging risk
diagram of Hollmann Thewes (see Figure 6) indicates, as expected, a very high clogging risk for
the TBM. Therefore, key aspects of the SCS JV involved identifying suitable soil-conditioning
products and the best possible starting parameters, which were later fine-tuned on site during
TBM advance. A snapshot of the soil-conditioning tests is shown in Figure 7.
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Figure 7. MC Labo;atory soil cz)nditioning example for London Clay; Source: MC-Bauchemie

The tests demonstrate the evolution of soil conditioning over time, including its rheological
behaviour and the clogging effects of the conditioned soil on the mixing equipment and the bowl
surface. The example presented demonstrates effective clogging protection and suitable
rheological behaviour, even when slightly over-foaming.

The final MC soil conditioning proposal for full chamber EPB tunnelling through Lower Mottled
Clay and London Clay is based on the soil conditioning tests performed:

Foam type: MC-Montan Drive FL 04
CF 25t03%

FER 10 (atmospheric)

FIR 70-80

WIR 3-5%

This will result in approximately 200-260 kg of soil conditioner consumption per ring in closed
EPB mode. In semi-closed mode, soil conditioner consumption is expected to decrease by around
30% compared with closed mode.

4 TBM ADVANCE IN LONDON CLAY

4.1 TBM driving in semi-closed mode through full-face London Clay

Due to the competency and stability of the London Clay, the TBMs could largely be operated in
semi-closed mode, with a working chamber fill grade of around 70% and a compressed air bubble
on top. Figure 9 shows a typical TBM parameter sheet for these sections, used alongside the
permit to excavate. As shown by the volume loss calculations in Figure 8, all results were within
the expected design limit of less than 1.0%, with no significant settlements. Most of this tunnelling
stretch also has an overhead rail line and extensive rail-track monitoring.
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Figure 9. Typical TBM parameter sheet @ air
pressure mode; Source: SCS JV

4.2 Changing TBM driving mode from semi-closed to full EPB pressure

During some of the most critical and settlement sensitive sections of the alignment, SCS JV
operated the machines in full EPB mode under full-face London Clay conditions. This was
particularly the case while mining within the Brent Valley Sewers' (BVS) zone of influence, with
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Figure 10 TBM driving parameter change from semi-closed to full EPB mode; Source: SCS JV



a design face pressure of 1.8-2.0 bar in the top crown section. The machines mined at a distance
of 1.5 TBM diameters below the BVS, which was considered the most sensitive asset encountered
along the alignment. The BVS is a 2.7m inner-diameter main sewer trunk connecting a population
of approximately 425,000 people to the Mogden Wastewater treatment plant.

As the TBM approached the sewer, the driving mode (as illustrated in Figure 10) was switched
from December 9™ to December 10™ 2024: from semi-closed mode with around 70% chamber
filling and top crown pressures of 0.8-1.0 bar to full EPB mode with 100% chamber filling and
top crown pressures of 1.8-2.0 bar EPB pressure. The selected TBM speed during semi-closed
mode operation was 50 mm/min, while in full EPB mode it was voluntarily reduced to 30-40
mm/min. Contact and thrust forces changed significantly in full EPB mode, but, due to the well-
defined use of foam and polymer, always remained within very reasonable ranges (see Figure 10).
As an additional measure to limit settlements, the annulus around the TBM shield was stabilised
with bentonite suspension and topped up using the TBM’s onboard pressure-controlled bentonite
feeding system.

With this configuration, both NTE TBMS passed through the Brent Valley Sewer without damage
and with only minimal settlements, as illustrated by the volume loss calculations (Figure 11and
the settlement data (Figure Figure 12): the allowed settlement in mm is shown as the black curve,
and the measured settlements after the passage of both TBMs are shown as the red dotted curve.
The individual settlement curves for each TBM have been re-calculated as the orange curve for
the 15 TBM (Downline) passage and the green curve for the 2" TBM (Upline).
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Figure 11. Volume loss back-calculations for EPB
mode; Source: SCS JV
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Figure 12. Settlement data for NTE Upline and
Downline tunnels; Source: SCS IV

4.3 Foam consumption in full EPB mode

The laboratory soil-conditioning trials indicated a consumption of 200-260 kg of foam
concentrate per ring in full EPB mode. The TBM data recorded over the entire stretch of full EPB
advance showed a minimum foam consumption of around 165 kg per ring, with medium
consumption rates ranging from 190 kg to 250 kg. The laboratory consumption data demonstrated
a high level of accuracy and were validated under actual site conditions.

5 INNOVATION: AFCS — ASSISTED FOAM CONDITIONING SYSTEM

AFCS is a joint development by MC-Bauchemie, TPC Tunnelsoft, and SCS, aimed at enhancing
safety and comfort during EPB tunnelling. AFCS is designed to assist TBM operators by
providing a quick overview and improving security by reducing the interpretation required for
existing parameters. It also aims to facilitate full EPB driving mode with minimal settlements and
has been extensively used to train TBM operators for proper EPB mode tunnelling after long
semi-closed sections. AFCS can also predict clogging risks, allowing the TBM operator to make
early adjustments before irreversible clogging occurs.

The display is divided into four main sections, providing graphical feedback on the foam injection
port status and showing selected KPIs related to the overall TBM condition and soil conditioning
status. Thresholds are set based on the TBM design, soil-conditioning test results, muck disposal
frame conditions, and the developer's experience.
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Figure 13. AFCS screen during ringbuild; Source: TPC

During ring construction in full EPB mode, it is crucial — among other KPIs — that both excavation
screw gates are closed and that the EPB pressure remains at the designed level with a fully filled
working chamber. Figure 13 shows all relevant indicators in green, indicating that everything is
in order in this respect.

Furthermore, no foam or water must be injected unintentionally at the cutterhead or into the
working chamber; the soil conditioning system should be turned off. Figure 13top-left section of
Figure 13 shows one injection port indicator at the cutterhead in red, signalling water injection
(>100 litres per minute or more than 3 m* during ring build), which severely disrupts soil
conditioning and would likely not have been detected without AFCS. The cause was a blocked
automatic valve that failed to close properly.

5.1.2 AFCS (@ Advance mode
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Figure 14. AFCS screen during EPB driving operation; Source: TPC

An example of an on-site situation during TBM advance in full EPB mode is shown in Figure
14. The operator's performance is generally satisfactory; however, the current driving approach
carries a risk of clogging, as indicated by the red-highlighted areas in the top-left cutterhead
graphical section. These early disturbances are still reversible, allowing the operator to adjust soil
conditioning and driving parameters to reduce the risk of clogging. The Assisted Foam Control
System (AFCS) therefore highlights relevant key performance indicators (KPIs) in red.

Timely adjustments to operating parameters can prevent severe cutterhead clogging, a condition
that is usually irreversible and requires subsequent manual cleaning, causing operational delays
and safety concerns.



6 SUMMARY AND OUTLOOK

Both semi-closed and full EPB mode tunnelling delivered highly secure results with only minimal
settlements, even allowing crossings under sensitive infrastructure.

Adapting both the cutterhead design and soil conditioning system, based on lessons learned from
previous projects in similar geology, proved effective and was a key factor in the successful tunnel
drive. The positioning of the foam ports on the cutterhead, together with the flexibility of the soil
conditioning system to add water in a controlled manner directly in front of the cutterhead as a
standard feature integrated into the soil conditioning PLC system, clearly demonstrates the
importance of this configuration for effective soil conditioning.

AFCS significantly helped manage the soil-conditioning operation, especially during passage
under settlement-sensitive assets. The clogging preview feature proved successful in initiating
fine-tuning of soil conditioning, enabling control of surface settlements and minimising the
impact of clogging on TBM drive operations.

Downtime caused by clogged or blocked cutterheads was minimised.

These improvements in TBM design and soil-conditioning efficiency are evident when comparing
cutterhead breakthrough photos from earlier projects:
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Figure 15. CTRL II; own source Figure 16. Northern Line Extension g
Source NLE JV

Figure 17. HS2 SCS NTE; Source
SCS v

Figure 15 shows one of the CTRL II projects in London Clay from 2001-2003, with a clogged
cutterhead, while Figure 16 depicts the Northern Line Extension project in London Clay from
2017-2018, where the large openings between the arms were kept clear. However, clay still built
up on steel surfaces, reducing cutterhead efficiency and still causing surface and centre clogging.
In contrast, Figure 17 shows the HS2 NTE TBM breakthrough cutterhead condition from June
2025, with all openings, including those in the centre, remaining clean. All injection ports on the
cutterhead remained operational throughout mining, with none ever lost.
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